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ABS.•ACT

The generic problem of selecting the sequence of sensors which

optimizes the information received about a number of discrete hypotheses

is considered. The optimization criterion penalizes the uncertainty

present about pairs of hypotheses in a form which has an eigenfunction

property with respect to a Bayes update of the conditional probability

distribution. Application of the Portryagin minimum principle yields

elegant solutions to an interesting class of problems. Applications in

surveillance, failure detection, and nondestructive testing are possible>
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OPTIMAL SENSOR SCHEDULING FOR MULTIPLE HYPOTHESIS TESTING

I. Introduction

The problem: Often several competing hypotheses exist about the state

of a particular entity, and real time observations must be used to discriminate

between them. Once the set of sensors to be used has been specified, the

observations can be used to update prior information in a number of ways,

although Bayes' theorem underlies some of the most common techniques [E].

In this framework, the net infarmation is captured in the posterior probability

distribution over the hypotheses.

In cases where several sensors are available but are mutually exclusive

in their use (either due to interference, or because one physical sensor must

be pointed in one of a number or directions), an additional problem arises

in determining, also in real time, that sequence of sensors which should be

activated to provide the above information. The efficacy of a particulac

sensor sequence must be related to the character of the resulting posterior

probabilities; these should clearly discriminate among the hypotheses.

Mathematically, this can be viewed as a problem of selecting, at each

point in time, one of M sensors to obtain information about a set of K

hypotheses. By defining an interesting cost function on the se of posterior

distributions, we can seek an optimal sensor scheduling procedure.

Applications: A number of generic application problems exhibit this

structure. In surveillance problems [e.g. 23, the hypotheses would present

the presence and type of target that exists at each point in the surveillance



volume, and the sensors would be radars or detectors which must be pointed

in azimuth and elevation. In failure detection and identification [3], the

hypotheses may represent different types of failure and onset time of the

failure. In nondestructive fault localization [4], the hypotheses are

types and locations of faults in some medium, and the sensors report the

attenuation of energy as it passes through the medium in some direction

to be specified. Search problems [5,61 fall into this structure as the

hypothetical locations of an object are observed from various vantage

points.

Perspective: A number of authors have addressed scheduling problems

in this context. Some make special assumptions regarding the observation

probability distributions [7,8], others treat the more general problem

[9,10]. However, two common threads connect these approaches: they

obtain feedback laws mapping posterior destributions into sensor selections,

and they use optimization criteria based on weighted probabilities of ?rror

(i.e. Bayes' risk criteria). A common result of these two factors is a

very ungainly decision rule unless relatively restrictive assumptions are

made.

The point of departure of the solution found here is precisely these

two characteristics. This solution is content with being open loop

(although it is often actually easier to use in an open loop4feedback

manner), and is based on a criterion which measures the uncertainty in

the posterior distribution (and incidentally provides an upper bound on

weighted probabilities of irror).

Overview: The strategy taken in the sequel is to first pose the

problem in discrete time, with emphasis on the new cost function and its
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interpretation. Then the stochastic problem is reduced to a deterministic

control problem, in continuous time, with a convex control set. The

Pontryagin minimum principle can be brought to bear on the problem, and

the resulting necessary conditions for the optimal schedule define a two

point boundary value problem with sectorwise linear dynamics. The general

structure of the solution is then available; certain structural assumptions

lead to an iterative solution for the general case, and an elegant solution

for a more restricted set of problems. An interesting side result is a

geometrical characterization of each sensor by a vector of parameters

decribing its capabilities to distinguish between various pairs of

hypotheses.

II. Problem Statement.

Hypotheses! The K hypotheses, one of which may be valid, are denoted

"Hk = k 1,....,K. Prior knowledge provides a probability distribution at
-A

time t -0, denoted by W (0), where
-- I

T 0) - pH 1 ) (1)

Observations: Sensor outputs obtained at time t from sensor j are

denoted yj(t). The statistics of y.(t) are independent of everything

except the sensor j and the underlying hypothesis H; in particular

P (y Hkt)I, yt(s)) L p(ylWt) Hk) s t (2)

-1
(In contin%.ous time, this implies that y Wt) is a process with independent

increments [11]; the continuous time case will be addressed more fully in

section III). However, no assumption of stationarity of these distributions

3
Notation is reviewed in Appendix A.
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need be made.

If

rk(t) ( P( ) .... yt)) 3

then by Bayes' law

IP r-(Y(t+1 )Hk) (4)
p(y(t+l))

where subscripts denoting sensor choices have been omitted. Equations (1)

and (4) give the dynamic equations for the evolution of the posterior

distribution as observations are obtained.

Cost: The objective of a detection or identification algorithm is to

produce correct estimates of the true state of a system. It is also bene-

ficial if these estimates come with high confidence levels. Thus, if one

is seeking to drive posterior distributions to some values, the best values

are near the extremes, where the true hypothesis is known with almost

certainty.

Consider the binary hypothesis case. Figure 1 shows three candidate

penalty functions which have reasonable qualitative characteristics -

they are all minimum at the extremes and convex downward. Number 1 is the

minimum probability of error incurred if a decision between H1 and H2 had

to be made. Number 2 is a direct measure of the uncertainty in the

distribution: it is the entropy (scaled by 1/2)

z1 2
E n tog 52-I °g2 l (5)

k-1

The third is similar to the second

1 2 12 (6)

Note that the last two indicate that an improvement in the probability of



FIGURE 1

Candidate Penalty Functions on it Binary Case
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error from, say, 10% to 1% is much more rewarding than one from 49% to 40%r

and thus greatly encourage extreinC. distributions.

The third form posesses unique analytical properties, as will be seen

in section III. It can be generalized to the form

X r k(7
VOTV...'ir k TI itJk(7

k=1

K
1 = E rk rk>o0

k=l

and to sums of terms of this form without compromizing these properties.

Defini.tion: An obscurity ftunocion v (r) is of the form

vV~n) = E b.i v. (IT)O8
i=l 1

with each v.i (it) having the form of (7).

The obscurity function measures the lack of knowledge abou the hypotheses.

it is minimum when Tr is pure, i.e. when all but one component are zero.

The coefficients b.i represent weights attached to varying types of obscurity

as indicated by the form of the associated v. i(it).

Example: Consider the ternary hypothesis testing problem. Two candidate

obscurity functions are

13

and V2 (IT 0 I Iý 1/2 + T1IT3)/2+( 2T3) 1/2 (10)

A -~ T

Both are zero for pure R,; both have their maxima at IT =a [1/3 1/3 1/3]

However, the former includes as minima all distributions with one component

zero, the latter has only three minimum points (Figure 2). The former is



7 . a7 r,

- ~V2(v)

FIGURE 2

Example Obscurity Functions
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minimized when any hypothesis is eliminated; the latter, when any hypothesis is

confirmed.

The above definition is quite general; in the sequel we will assume all

terms in the obscurity function are of the form

-A 1/2
vi 00) = rk 111)

All results will generalize to the earlier case, but this makes clear that

each term in v(n) represents the degree to which a pair of hypotheses can

be distinguished, and thus a different type of obscurity.

The selection of the obscurity function provides a great deal of flexibility.

For instance, if one is only interested in determining whether or not H1 is

true, a function of the form

K (12)

k= 2

is appropriate, as it penalizes ambiguity between HI and any other hypothesis

without including the obscurity between the others.

Special Cases: There are two special cases of obscurity function of note.

Definition: The uniform obscurity function is

V (70 k ) /2 (13)
kl-l k2= 1 2

k 2 k1

The uniformity stems from the equal penalizing of all pairs of hypotheses;

useful interpretation of v is given in
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U-
Theorem 1: (sr) is an upper bound to the minimum probability of error

achieved jy a decision cule selecting an estimate of H at each point in

time, based on the distribution 7T.

Proof: The minimum probability of error is achieved by selecting the

which has maximum probability Irk; the resulting error probability is

1- k* Now

SK KU- =1 (ik2)1/2
v Eir Et 2/- k7

kl=l k 2=1 1 2
k 21

K - 1/2

• • )' (14)

-21 kc 2

kyek

S~K
> 7ri.

k=l '2
k2f

= U1 - 7Tk

The second special case concerns a set of hypotheses which is the

cartesian product of two or more sets of subhypotheses. if the posterior

distributions on the composite set always factor into distributions on the

component sets, a natural obscurity function arises which additively decomposes.

Let Hk be the composite hypothesis ("1 Ht), where superscripts denote the

component hypothesis sets. Independence of all posterior distributions

WkW - 1, 2 IT Wit kt)rt)
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is implied by the conditions

f1 2
(a) Vkt: wkz(O) = Tr0 r(O) (16)

(b) V. : p(Y.(t)jl(l H)) = p(y.(t)Ik) (17)

or
p(y (t),H I H1) =p (yj (tl I H.)

(1

That is, the prior distribution has the component hypotheses independent,

and subsequent observations change the distribution on either H.k or H , but

never both.

c ._

Definition: A Cartesian obscurity function v (i,) is of the form

C .b 1 -1 2 -av (7) v (iT) + v() (18)

I K I L 1/2

b() ,b E (r k k IF (19)
kl=l k2=l 1 12 Z1 1 2

L L 2 K
vC rYO S E bk;1  E OS (ik ZIT k ). (20)

9 ( 1 = =1 1 2 k=1 1 /2
1 i~ £2, £I£ kl • 1• £2 (0

Independence (15) then implies

S1 K K 1 21/2
v Or) - r E b (7k Trk)

kl=l k=2=1 1 2 ( 1 221

2 -
and similarly for v (0). The Cartesian obscurity function thus additively

decomposes into separate obscurity functions defined on the two component

sets.

This result will be used in an example in section VI.

Conclusion: The above discussion has dwelt on the interpretation and

structure of the obscurity function. Assuming it provides a reasonable
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measure of the poorness of the state of information defined 'y the posterior

distribution T(t), the objective of minimizing its sum over some time horizon

is appealing. The optimization problem is thus: select the sequence of

sensors j (t) from which observations are taken, to minimize the functional

T
E ( E v(r(t))} (22)

t=i

where the expectation is with respect to observations y,(t). The optimization

is subject to the initial conditions (1), dynamics (4), and distributions on

observations(2).

III. Reduction to a Continuous Deterministic Optimal Control Problem

The problem stated above is a stochastic optimization problem, where the

original, imperfectly observable state H has been replaced with the

conditional probability r, which can be determined exactly. State transitions

are still stochastic, due to the appearance of y(t) in (4), but possess

a Markov property. This is a standard approach [12] to dealing with this

type of problem; the next step might be to use dynamic programming to obtain

a feedback solution, where j(t) would be selected on the basis of u(t).

Due to the lack of success of this approach in producing implementable

solutions for the general, multipli hyputhesis problem consider a less

ambitious goal: finding the optimal open 1_22 schedule (i.e. select the

best sequence of sensors based only on the prior distribution). Not only

are solutions of this form applicable in some cases where feedback solutions

cannot be implemented, but they can be used as open loop feedback solutions

where the entire schedule is effectively recomputed at each time, using 1(t) I
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as the prior distribution, and tne first selection given by that schedule is

implemented.

Reduction to a deterministic problem in this case involves performing

the expectation in (22). This results in a discrete time problem and a

characterization of each sensor by a set of coefficients. After some

discussion of the interpretation of these coefficients, a continuous time

approximation will be constructed for further study (or, the continuous

time problem can be found directly in the case of continuous time observations).

After a final detail, where the control set i s extended from discrete points

to a connected set, the equivalent deterministic optimal control problem is

presented.

Reduction to Deterministic Dynamics: The form of the obscurity function was

selected for its qualitative properties and because of:

Theorem 2: Functions of the form (7) are eigenfunctions of the expectation/

Bayes update operation and the associated eigenvalue is completely determined

by sensor characteristics.

Proof: Let 4

21/
v vi(-7r(t+l), t+l) - x i(t+l) Or1 it 2)I/

Then
v (it(t), t) = E (V(7tt+l), t+l)) (23)i 7•"(t+l) '

with r(t+l) given by (4). Substituting,

v (Tr(t), t) -=f p ( It+l) x iit+l) -*2v(p (yj (t+l)))

M ijl(t+l) xi(t+l) (r 1 (t) r2 (t))/ 2  (24)

4 For notational simplicity here, assume the ith term of the obscurity function

involves H, and H2

S... .. -- ' • • •r • =i'• "MW -'i•'=." l=• =/ • •1
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where j is the sensor selected for t+1 and

1/2

0i. (t+l) f (p(yj(t+l)IH1 ) P(-(t+l)IH2 )) 1/dyj (25)

_33

By (24), vi(Or(t+l),t+l) is an eigenfunction of the update (23), with C& j(t+l)

is eigenvalue.
0

Now, for a fixed sequence of sensors

5 (j(t), t , 1,...,T) , define the expected cost to-go at time t with

conditional distribution Tr(t) as

T
V3 0(t), t) - E S v(r(s)) E (26)

sat+l

where Vi.r(T),T) - 0 at the terminal time. The key result is then3

Theorem 3: At each time t, the cost-to-go takes the form

VOlw(t),t) - E x (t)V M() (27)
i-li1

where
xiWt) - a x i ( t+l) + b (28)

x i (T) = 0 (29)

Proof: By reverse induction. At t - T, (29) implies the cost-to-go is

uniformly zero. Assume (27) holds at time t+l,so
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v('Tct),t) = E {V- Oi(t+l), tl)) + b. V.(tW)) by (8,22)
/3

N

= E { E xi(t+l) v1i(wt+l))} + b. v Ow(t)) by (27)
i=1 1 1

N -
= . (t+l) xi(t+l) vC(I(t)) + b1 v( r(t)) by Thm 2

iml ij

N
= S (cij (t+l) xi(t+l) + bi) vi(r(t))

and v(70) is of the fundamental form (7).

This gives a deterministic linear dynamical problem (28,29) with states

xi(t) representing the amplitudes of a finite number of modes of the cost-

to-go function excited by the terms of the obscurity function. The co-

efficients et.. Ct) represent the decay of x t) when sensor j is selected

at time t, and the driving terms bi representing the relative importance

of each term. Moreover, the xi (t) are truely states as their evolution

depends only on selections j made betweeen t and T, although this property

holds in reverse time.

Corollary 3a: The total cost is

) N
V.(r(O),0)) a E x1 (0) vi(T(0)) (30)

i m

Proof: Immediate from Theorem 3 when t -a. 0

If (known) parameters ci are defined as

-4
ci = Vi (I(0)) (31)

then the equivalent deterministic optimal control problem is to select j

I..
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to minimize

N
E x (0) c, (32)

i=l

subject to

xi(t-l) = Cij(t) xi(t) + bi (33)

xi (T) - 0

Interpretation of the .ij: These parameters measure the ability of sensor j

to contribute to the reduction of each term of the obscurity function.The

set f aij Ji = 1,...,N) describe the information gathering ability of j

in all directions which are contained in v(i). For example, sensor 1 may be

able to distinguish H1 from H12 and H3, but not between the latter, while

sensor 2 only separates H2 from H3 . The information from each sensor alone

is incomplete; the set above paves the way towards a geometric interpretation

of information.

Gross properties of the a.. are

Theorem 4: for all i,j,t,

0 < O ij(t) <1 (34)

with the lower limit obtained iff it is possible to completely eliminate one

of the hypotheses in v i with any single observation y.(t), and the upper
-A

iff yC (t) is independent of the hypotheses in v ir).

Proof: Since P(y.(t)IHk) > o for all Y for all

1/2*
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with equality iff

P(YH(t)Hk1 ) P(y.(t)jH ) = 0 (36)

for all y. (t), i.e. iff the set of yj(t) which may result when H2 is true

is disjoint from that possible when H.2 is true, and hence Yj(t) provides

perfect information to distinguish between them. Since also

P(y dY - 1 (37)

the integral

p(yj(t)I k P(yj (t)lk )dy < 1 (38)
-~ ~ 1 2

with equality iff

p t I(Y ((vt) ) (39)

for all yjlt).

Thus, qualitatively speaking, good schedules use sensors where the a

are small for terms where ci or bi are large.

In preparation for the transition to continuous time, introduce

Definition: The clarification coefficient of sensor j with respect to

vi(t• is aij(t)

aij(t) - -in aij t) (40)

Corollary 4a: Clarification coefficients are nonnegative and unbounded

with equality to zero holding iff the sensor produces outputs which are

independent of the hypotheses of the associated term.

h'I
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Proof: Properties of in. 3

Appendix B contains formulae for the clarification coefficients for two

coimnon observation processess: Poissor and Gaussian.

Reformulation in Continuous Time: The remainder of this section deals with

improving the analytic properties of the problem by replacing the discrete

time and control sets with continuous equivalents. The problem as posed

(32,33) can be solved using the discrete time minimum principle (13], but

the solution has implicit properties which are less cumbersome in a

continuous time framework.

Consider the formal continuous time analog of (32,33): minimize

N
E ci x i(0) (41)

i=1

with

dx.
- -ai (t) x(t) + b (t) x (T) - 0 (42)

where again the dynamics appear in reverse time. Integrating (42) from

time t to time t - 6 gives approximately

x.(t-6) -x(t) - a I(t) xi(t)6 + bi(t) (43)

xi(t-6) (1 - a ij(t)6) xi(t) + b.i t) (44)

z e-aij(t)Wki(t) + bSi WS

provided 6 is sufficiently small that second order terms can be neglected,

i.e.
a ij (t)6 «< 1 (45)

• ' ' ' , , ' , k• • t-••1)
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Setting 6 = 1

x(t-l) a ij t) xi (t) + bi t) (46)

Provided the a (t) are the clarification coefficients (4) and a. . (t) the

eigenvalues (25), (41,42) may be valid approximations.

The approximations require (45) to hold when 6 is the unit discrete time

interval. If it is invalid, decreasing 6 is suggested - i.e. increase the

discrete time sample rate. The principal effect of this is to create more

opportunities for changing the sensor selection - i.e. making switch times

into more continuous variables. As 6 - 0, the approximation becomes exact; 5

this can be shown specifically for continuous time Gaussian processes either

using [14] or more direct techniques (Appendix C).

Convexification of Control Variable: In the problem thus far there have been

a discrete set of sensors from which to select. It will be convenient to

convexify this set by introducing the M control variables u.(t), which

specify what fraction of an infinitesimal cycle is devoted to each sensor j.

Thus
M
E u.(t) 1 u.(t) > 0 (47)
J=-i -

are the constraints which admissible controls must satisfy.

With this interpretation, (44) becomes
- a. (t)u (t)6

xi(t-6) z e j x. i(t) + b6 (48)

or, as 6 0

5 As the discrete sample rate goes to zero, this expression is exact for all
stationary processes, as well as for nonstationary Gaussian and Poisson
"processes. It provides a piecewise linear approximation for other sampled,
nonstationary independent increments processes; however, the sequel will
assume a C.t) to be twice differentiable and thus a more advanced approxi-
mation, such as splines, may be necessary.

i l 'I
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dx,

d t)= -ai (u) xi(t) + b1 (49)

where

a.(u) £ a. (t) u (t) (50)j-1

This convexification of the control set allows the above interpretation

of polling sensors with u. being the fraction of time devoted to sensor j.

Mixed controls (some u. 9{0,11) do arise in the optimal solution. Were a

solution attempted without convexification, the optimal solution would still

be forced to achieve this mixture by infinitesimal "time sharing". In

practice, either this polling can be approximated or, in open loop feedback

uses, it will almost never occur as the set of T(0) for which it

is initially required is of measure zero.

Reversal of the Time Index: Finally, the reverse dynamics that naturally

arose in (32,33) and (40,41) are a notational nuisance; replacing the time

variable t with another t'

t' - T - t (51)

yields an identical problem more in line with standard optimal control problems.

The only caveat is that the solution to the resulting problem, u*(t), is

the reverse of the optimal schedule.

Conclusion: This section has reduced the original problem (1,4,8,22) to

an equivalent problem: minimize

N
S c. x. (T) c. - v. 1•10)) (52)

i__1"
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with

xi (W) -a (u(t')) x.i(W) + bi xi((0) 0 (53)

The system dynamics ai(u(t'))will always be nonnegative, and larger values

correspond to greater clarification by the selected sensor.

IV. Optima] Solution of Reduced Problem

Here the above problem is interpreted using the Pontryagin minimum principle

and the geometric structure of the solution emerges. The first section intro-

duces the type of results obtained by examining the binary hypothesis problem

where only one dimension of obscurity exists. After stating necessary conditions

which the optimal schedule must satisfy and deriving some of its properties,

the interpretation of these conditions in terms of sensor clarification co-

efficients provides some preliminary tests for eliminating sensors from

consideration. Further examination of singular (mixed) control arcs yields

more basic structure of the schedule as well as a classification of problems

in terms of the sensor sets. These will be the general results; section IV

will exploit the necessary conditions to compute the optimal schedule.

Preview - Binary Hypothesis Testing: This special case illustrates some of

the conclusions that can be drawn about optimal schedules. The obscurity

function between the two hypotheses H and H2 has one term

v 1 = (Ti IT2 )1/2

so the continuous problem to be solved is to minimize

cI xI (T)

with
xl(t) - aju(t)) xl(t) x 1 xi(O) - 0

*- * * .
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Here the solution is obvious: choose u(t) to maximize the coefficient

a 1 (u(t)) at each time t. This corresponds to selecting the sensor with

maximal instantaneous clarification coefficient aij t) at each t.

Thus u is chosen to maximize (a function of) a 1 (t) at each time, and

the selected sensor may vary as a. . (t) changes with time. No mixed controls

are required here, but multiple hypotheses with multiple terms in v(•) will

induce a directionality which requires mixing.
_a

This can be extended to the case where u adjusts continuous parameters

internal to a sensor; see Appendix D for an example application in data

compression.

General Necessa Conditions: Necessary conditions for the dynamic optimi-

zation problem (52,53) can be obtained from the Pontryagin minimum principle

[15,16]. They are summarized in

%A

Theorem 5: The optimal solution u(t) to (52,53) satisfies:

NN
z Mit) ai(u*(t)) > E zi(t) ai(u(t)) for all ult) (54)

i=-L

t(t) qt) .1 (0) = 0 (55)

qi t) au() .t
= i(u*(t)) qi. 1 q(T) M bi c. (56)

Proof: see Appendix E. 0

Because of their associations with variables in the proof, (54) will
be referred to as the Hamiltonian condition, zi (t) as states, and qi(t) as

costates. In addition, introduce the M vectors

a.(t) = [ait) W 2j W ..... aNj (t)] (56)

1) .. ... . . a2 ., , , (56)
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of clarification coefficients for each sensor and the NxM composite matrix

at a2 aM (57)

so that

a(u(t)) A(t) u(t) (58)

is the vector of system coefficients a. (u(t)).

The necessary conditions can then be rewritten as

<z(t), a(u(t))> > <z(t), a(u(t))> for all u(t) (59)

z(t) q(t) z(0) = 0 (60)

.!A 5-3J - --

q(t) a(u(t)) q(t) qiT) be c (61)

where <-,*> is the standard inner product in 3N and * is componentwise

multiplication.

Properties of z(t) and q(t): Some properties of the solution to (59-61)

are immediate. Note that these describe a 21M dimensional differential

equation with boundary conditions at both ends of the time horizon. The

solution approach here will be to focus on the initial conditions for z

and on the interrelationship between the dynamics of z and q.

Theorem 6: z(t) and q(t) have the following properties:

"a) q(t) > 0

b) q(t) is monotonically nondecreasing

c) z(T) is monotonically increasing

d) if q(0) -(T0 leads to a solution of all conditions except

q(T) = b * c, then so does q(0) - 0 for all positive I

l0
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Proof: a) Assume q(t) 0. a&M MTI) > 0 for all u(t) (frm theore 4),

so q(t)_< 0 for t > to, and hence q(t) < 0 for t > t . But

-- - 0 
-

q(T) = b * c > 0 in contradiction.

b and c) immediate from a) and theorem 4.

d) If (z(t), q(t)) satisfy all conditions except q(T) - b * c,

then (yz(t), yq(t)) also do provided y > 0.

Thus z(t) moves outward into the positive sector of PR, from the

originland q(t) moves outward to approach q(T).

Properties from the Hamiltonian Condition: The Hamiltonian condition (59)

provides the key to the geometrical structure of the problem. The vectors

-1
of clarification coefficients a. (t) describe M points which are vertices

-4
of a polytope 'in P N. The control u(t), by taking a convex comhination of

the a. (t), allow a(u(t)) to be selected anywhere in the interior or on the

boundary of this polytope. These candidates for a(u(t)) will be called

the control pclytope.

The condition (59) implies that u* (t) must select a point in this control

polytope which has a projection on z(t) at least as great as any other

point in the polytope. It follows immediately that a (u Mt)) must lie on

the boundary of the control polytope, and in fact an even stronger condition

holds.

Theorem 7: Sensor j will not be used at time t for ± choice of b, c

or t if there exists a -onnegative vector r such that

a, (t)< At) r(t) (62))o - --
10

n

Sr.(t) = I r. (t) 0 (63)
jlJ o
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Proof: Assume (62,63) hold. Then for any nonegative z,

-5 3. -b -3 -1 -- %.aI
<z, a. (t)> < <z, a(t) r(t)> = <z, a(r(t)> (64)

so u(t) = r(t) provides at least as large a value of the Hamiltonian as does

a. . Since indeed z(t)> 0 for all time, j will never be selected at time t.

The converse of this theorem is also true, but will not be proven here.

The import of this theorem is that it provides a convenient test for

determining whether each sensor falls into the following class.

Definition: A sensor is superfluous at time t if it will not appear in the

optimal schedule, for any problem, at time t. It is completely superfluous

if it will not appear in such a schedule at any time.

Henceforth, consider only the set of nonsuperfluous sensors at each time t.

Returning to the basic geometry of the Hamiltonian condition, the

following concepts are helpful:

Definition: Two sensors are adjacent if the line segment connecting their

vectors of clarity coefficients lies completely in the convex hull of the

control polytype.

Definition: A face of the control polytype is a collection of mutually

adjacent sensors. Faces can be of any dimension, from I (a single sensor)

to N - I.

Now we find

Theorem 8: The solution to the Hamiltonian condition (59) is unique unless

z is normal to the line connecting two adjacent sensors.
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Proof: (59) is the marimization of a piecewise linear function of u

subject to a linear constraint and nonnegativity requirements. It is well

known that this maximum occurs at a vertex of the function. It is unique

unless

<z, a. Wt)> = <z, a Wt)> (65)
]i

for two vertices j1 and j2' i.e.

<z, a (t) -a, (t)> - 0 (66)

Also, the mayximum occurs at any convex combination of a.l and a.

(66) implies z is normal to the line connecting the two vertices; the

convexity condition requires that the segment connecting the vertices also

be on the boundary of the control polytope, i.e. that Ji and j 2 be adjacent.

This defines switch curves from one sensor to an adjacent one; u Wt)

takes on different valu s (and is pure, selecting only one sensor) on

opposite sides of the hyperplane defined by (66). All switch curves are

linear manifolds including the origin, hence the regions between these

2N -4*curves are sectors of P2 (Figure 3). Since u is constant within each

-4 -J.sector, the overall dynamics of (z(t), q(t)) are piecewise linear, with

the pieces being sectors. As z(t) moves from sector to sector, it selects

a sequence of sensors, where each sensor follows another which is adjacent

to it. This property helps reduce the number of possible sensor sequences -

any schedule with nonadjacent sensors in succession is not optimal.

What happens, though, if z(t) does not move from sector to sector, but

stays on the boundary separating two or more sectors7
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FIGURE 3

Control Sectors and Switch Curves with Singular Arcs
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Singular Control Arcs: When z(t) stays on a switch curve for a nonzero

interval of time, the Hamiltonian does not provide a unique choice for u-i(t)

for that interval. However, the requirement that z(t) stay on the curve

for the continuous interval implies additional conditions (1.] namely

Id -A
S<zt), a (t) - a. (t)> - 0 (67)

dtnJ 1 32

This condition can be exploited to find partial optimal paths at the start

of an interval.

Specifically, consider singular control between adjacent sensors I and 2.

Define

n1 2 (t) - a 1 (t) - a 2 (t) (68)

as the normal to the switch hyperplane between the two sensors. The selection

between them is then made as

< z't), 12 (t)> > 0 choose 1

. &
<z(t), nl2 (t)> - 0 ambiguous (69)

d(t), n1 2 (t)> < 0 choose 2

In order to maintain the ambiguous case,

-1 -3k :,I
< q(t), n 2(t)> + < z(t), n1 2 (t)> - 0 (70)

< a(t) o q(t), n12 (t,%> + 2< q(t), n12(t)> +<z(t), n 2(t)> - 0 (71)

are necessary where a(t) is the vector of coefficients resulting from some

convex combination of a 1t) and a 2(t)

For states and costates which satisfy (69-71), the behavior of their

trajectories and the conditions for singular control are summarized in
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Theorem 9: If z 1 (r), q(T) are the trajectories resulting from application
-h

of sensor 1 for a small period of time following t, (T £ (t,t+t]) and z2(T),

q2 (T) likewise for sensor 2, both with initial conditions at t satisfying.

(69,70), then

a) <z 1 (T), n1 2 ft)> > <z 2 (T), n1 2 (T)> (72)

b) <ZI(T), n1 2 (T)> > 0 iff

< al(t) q(t), n 2(t)> + 2 <q(t), n12(t)> + <z-t), n12(t)> > 0 (73)

c) < Z2 (T), n1 2 (T)> < 0 iff

.-$ .4 -_ J. ±
<a2(t) q(t), n12(t)> + 2 <q(t), n12(t)> + <z(t), n 2(t)> < 0 (74)

d) Singular control arise if and only if both (b) and (c) hold.

Proof: The proof is primarilly algebraic and deals with the evolution of

the projection of z onto the normal to the the switch hyperplane. Details

are contained in Appendix F. C

Theorem 9 provides a way to determine whether singular controls may exist

at a specific point; as such it is rather tedious in general. A broader

condition is:

5

Corollary 9A: A sufficient condition for (73) to hold at every point on a

singular are along the switch curve, at time t, is that there exists a

y > 0 such that either

Y (12(t) > n 2(t) and (75)

Ya Ct)n 12(t) + 2 n 2(t) > n 2(t) (76)

This is also necessary if the statement is to hold for all such points;
this will not be proven here.
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or

b) Yn (t) > -n (t) and (77)
12 12

Ya 1 (t)n W2()t) > -nt (T) (78)

A similar condition, with 2 replacing a and inequalities reversed,

guarantees (74) at every point.

Proof Assume (a). Since z(t) > 0, (75) implies

Yc z(t), n1 2 (t)> > <z(t), n1 2 (t)> (79)

Since q(t) > 0 also, (76) yields a similar result which, when combined

with (79), gives

2
Y C2< zlt), n12(t)> > at < z(t), n12(t)> (80)

By (70) both of these are nonnegative at each point on the curve; since

y > 0, (73) must hold.

Assume (b). Identical arguments give

12- - --z -
a t < z (t), n- t), ( (81)Ydt 212 - a-<(t n1()>

and (70) again gives the latter as equal to zero along a singular curve,

so (73) still holds.

The condition for (74) is proven in the same way. 0

This provides a quick test to see if singular controls can be maintained

for arbitrary periods along a switch curve. Failure of the conditions of

corollary 9k to hold require more detailed examination for singularity using

theorem 9.
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A final point on the topic of singular controls is to note that it is

possible to maintain singular arcs using more than two sensors. Since this

requires z(t) to stay on the switch curve between each pairs of sensors,

it is necessary that all sensors involved be adjacent. The conditions for

the existence of singular controls are the union of the pairwise conditions

above; for computation of the actual mixture of sensors, see appendix F.

Thus singular controls can exist; they will form the backbone of the

solution to a well structured class of problems discussed in section V.

Crossins of Switch Curves: While theorem 9 gives conditions for singular

controls, it also provides a great deal of information concerning how and

when various switch curves may be crossed. Successive sensors in an optimal

schedule must be adjacent to one another and this limits the set of candidate

orderings; exploitation of theorem 9 allows further limitations to be

considered.

The focus of this development is on the linear manifold in3R2

-L -%<z(t), n1 2 (t)> = 0 (82)

< q(t), n1 2 (t)> +< z(t), n12 (t)> -0 (83)

Being linear, this manifold separates XR2N into four subsets corresponding

to the possible inequalities replacing - in (82, 83). The partition (82)
_% -b

in z - space is the switch curve; the companion partition in q - space (83)

determines which direction z will be driven from the switch curve by the

current value of q . For simplicity, consider only the half space

< z(t), n12 (t)> > 0 (84)

Identical results follow for the other halfspace using n2 1 (t), and theorem 9
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dealt with the case of equality.

Suppose z(t) is in the sector where a (t) is optimal, and q(t) in the
1

half space

< q(t), n 2(t)> + < z(t), n 12(t)> > 0 (85)

Since this implies

d • -< z(t), n1 2 (t)> > 0 (86)

-k

z(t) must be moving further into the interior of the sector and sy from

the switch curve.

If q(t) is in the open half space complementary to (85), then

d -4 -3d < Z(t), n1 2 (t)> < 0 (87)

and z(t) is approaching the switch curve. If conditions can be found

to quarantee that q(t) lies in one or the other of these half spaces for

all time, then an important characterization of possible switches is

obtained.

This involves conditions under which q(t) crosses the boundary (83)

-A 
-

when a 1 (t) is applied. Suppose (85) holds but q(t) reaches the surface

(83). If

+< qz(t), n12 (t)> > 0 (88)

q will not move off of the boundary and enter the interior of the complement

(85). Hence (86) holds, and hence a2 (t) will not become optimal. Fortunately,

(68) is the same as (73) for which a sufficient condition was given in

corollary 9A.

Definition: The switch surface between two adjacent sensors, say 1 and 2,
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is closed under sensor 1 if q(t) cannot leave the sector (85) when

sensor 1 is being applied.

Corollary 9B: A sufficient condition for the surface between 1 and 2 to

be closed is (75-78).

Proof: Above (note 75-7?) do not involve either either z(t) or q(t) explicitly).

The principal implication of this development is that if sensor 1

is activated by z(t) entering the interior of its sector, q(t) satisfies (85)

at that point, and the surface between 1 and 2 is closed, then sensor 2

cannot follow sensor 1 in an. optimal sequence.

Corollary 9C: A surface which is closed in both directions supports singular

arcs.

Proof: Closure implies that the application of each control represented

on either side of the surface will drive a q(t) on the surface into the

respective interiors of the halfspaces. Hence the conditions (73,74) of

theorem 9 are met and singular conarols are possible.

Thus there is an interesting relationship between closed surfaces

and singular controls: while a surface closed in both directions precludes

scheduling I before 2, or vice versa, and hence cannot be crossed, it does

support singular arcs which follow the surface and branch at some point

into one or the other.

Example: Consider the stationary clarification vectors

aT
a1  = [1 2 3]

a2  = (2 3/2 11

a 3 (5/4 7/4 13/4]

Sa3~
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-A -
The surface between a1 and a2 is closed, since

n12 [-1 .1/2 2J

and (75,76) satisfied with '(= 2/3. (76) becomes

2/3 [2 1/2 >_ /2

3 22

It is closed in the opposite direction also, since n12 =-n1 and

Y I satisfies

Y a2 * n21 >_ n21 (89)

Routine verification shows that

% = -1 -a
a = 1/3 a1 + 2/3 a 2  (90)

does indeed maintain a singular arc as predicted by corollary 9C.

However, the surface between a and a3 is not closed in either

-4
direction. Note that in the stationary case, the partition of q space is

independent of z(t) as the second term in (85) drops out. (85) then requires

q2  f q1 + q3  (91)

Applying theorem 9 at each point of this surface gives

< a1 .q (t), n13> -> 0 iff ql 2>q 3  (92)

-1 -1 -a
< a 3 * q(t), n1 3 > < 0 iff q1 < 3q 3  (93)

Figure 4 shows a view along this switch surface; the upper arrows indicate

motion towards or away from the surface when z calls for a1 ; while the

lower do so for a 2 . Three regions exist: q pierces the surface regardless

1*i
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Example of Switch Surface Structure
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FIGURE 5

Example of Sensor Types
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of z ifq < q singular ar mayenistforqan.qc ms 7!

the boundary towards the (85) halfspace if q > q 3 . Any subset of these three

types of behavior may occur in a boundary wnich fails to satisfy corollary 9A.

These results give a final classification for sensors.

Definition: A primary sector j of the optimal dynamics is one in which all

switch surfaces with adjacent sensors are closed, for all t, from each of

them into j. A primary sensor is one activated when z(t) lies in the

corresponding primary sector. All sectors and sensors which are not primary

are secondary.

Figure 5 shows some examples of primary, secondary, and superfluous

sensors in a two dimensional case. Points representing the clarification

vectors of each sensor are connected where they are adjacent.

The distinction which primary sensors bear is given by

Theorem 10: For each primary sensor jot if

<q(0), a. > <max <q(0), a.> (94)

then sensor j will never appear along the resulting z(t), q(t) trajectory.

Proof: Since z(O) = 0, (85) becomes

-3 -3
<q(0), njjo (0)> > 0 (95)

when (94) holds. Since, for sufficiently small 6

-3 -1 -hb -A
<z(6), a.(6)> = 6 <q(0), a.(0)> (96)

at time 6 z selects some j # j as optimal and q(6) Z q(0) implies q(6 )

satisfies (85) strictly. Since the switch surface from each j adjacent
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to j 0 us closed from j to jos z(t) will never move into the sector corresponding

to j and hence j will not be selected. C

Corollary 1OA: A primary sensor j may be activated only if it is uniquely

selected at t = 0, or if a singular arc is followed which lies in some switch

curve on the boundary of sector jo"

Proof: With theorem 10 eliminating j from consideration if not selected by

-3
q(0) in (94), these are the only remaining possibilities.

A more powerful result can also be obtained.

Definition: A primary face of the control polytope is a set of mutually

adjacent primary sensors.

Corollary lOB; If a schedule involves the sensors of a primary face, it does

so by commencing with a singular arc mixing them. Until the terminal condition

is met, the schedule will successively drop the primary sensors from the mix,

6
and invoke a sequence of secondary sensors.

Proof: By corollary 10A, if any of the sensors on the face are to be

active, they must be included in a singular mix at t = 0. Since they are

mutually adjacent, it is possible (albeit not necessary) that they all appear

in the mix. Since singular arcs are confined to lie on switch surfaces, which

2N
are not dense in PR , control must pass to exactly one primary sensor unless

6A graphic view of this solution in three dimensions involves imagining the
control polytope rolling along a plane. The plane is one orthogonal to AZt);
as "(t) evolves, the orientation of the polytope changes with respect to the
plane. The plane initially includes an entire (primary) face of the polytope;
as time goes on the polytope will roll off that face and only a subset of the
vertices (an edge) will intersect the plane. Later, one of these will leave
and only the last primary vertex will touch the plane; successive points of
contact will be secondary vertices. Since the point of contact with the plane
is indeed the maximal projection of the polytope on z(t), this is optimal

motion.
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the terminal condition happens to lie on a switch surface. Since the other

sensor cannot appear intermittently (although the values of the mix variables

-3
u(t) may vary), they must drop out successively until one is left. Since no

other sensors can be activated until z leaves the final primary sector and

enters a secondary sector, nothing can be added to the mix until secondary

sensors appear. By corollary 10A, no more primary sensors may appear.
0

Conclusion: This section has addressed the optimal control problem

formulated in section III from the original scheduling problem. The result

is a two point boundary value problem, which in reverse time is

azt) = q(t) z(0) = 0 (97)

q(t) = a(u (t)) * q(t) q(T) = c • b

where

a(u (t)) - a.(t) uWt) (98)

and

<z(t), a(u Wt)> > <z(t), a(u~t))> (99)

for any utt) admissible. In addition, structural characteristics of sensors,

which may be easily tested, are available to constrain the set of possible

sensor sequences which may be optimal. In fact, the general structure

culminating in theorem 10 and its corollaries provides most of the solution

for a large class of problems.

V. Computation of Optimal Schedules

Returning from the optimal control problem above to the original scheduling

problem involves reinterpreting the previous results in the context originally

developed in sections II and III.
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Begin by returning to forward time, so (97) becomes

z(t) - -q(t) z(T) - 0 (100)

q(t) = -a(u(t)) q(t) q(0) = c - b

as the two point boundary value problem. (98,99) are static conditions and

remain unchanged. The solution u(t) specifies the fraction of effort to

be devoted to each sensor at time t. This section will discuss the numerical

solution of these equations using structural knowledge obtained in section IV;

specialization to the cases of primary and stationary sensors yields more

specific techniques.

Numerical solution: Solution of the equations (.100) can be achieved by a

number of techniques,such as an iterative strategy which refines guesses of

the unknown boundary conditions at each end of the time interval [18].

while the suitability of various techniques will depend heavily on the dynamics

of the ai (t), the following procedure is suggested for those problems where

these coefficients varl slowly.

1. Initial guess: z(t) 5 0, 0 < t < T

-32. Integrate the equation for q forward in time, selecting

-1
u(t) using an approximation based on the partitions induced

on q space by (83)

u(t) - arg max <q(t), a(u(t))> (101)

u
A

to get an initial guess of q(T), denoted q(O;T)

3. Integrate (100) forward using q(k;T) as terminal condition q(T);

7
i.e., by reversing the transformation (51)
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store the switch schedule. Obtain z(k;0) as an estimate
a3

of the initial condition on z.

4. Integrate (100) backwards using Z(0) - z(k;0) and the

schedule obtained in (3); obtain q(k+l;T) and repeat

3 and 4.

The advantages of this technique are that only the switch times (and

mixes over singular arcs) need be stored from iteration to iteration, rather

than either the entire z or q trajectories. For certain classes of problems

it converges in one step; these are discussed below. No other general

properties of this solution are known at this point.

This provides a technique to apply to complex problems with little

structure; special cases with strong structure can lead to much simpler

solutions.

PrimarySensors: The corollaries to theorem 10 shed light on the special

case of primary sensors, where z(t) is forced tc lie within a closed primary

sector as long as q(t) satisfies the condition (85) for each sensor pair

defining the sector; i.e. q(t) lies in a convex region in q space. If a

pair z(0), q(O) can be found so that these satisfy all constraints

< z(0, n l(0)> > 0 (102)

< q(0), n. (0) > + < z(0), n.j(0)> > 0

for a primary sensor j and all adjacent sensors 1, we can conclude that

this initial condition corresponds to the terminus of generic singular arc

as described in corollary lOA (in reverse time). In particular, a non-

negative z(0) satisfying (102) without equality,, for the known q(O)
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guarantees that sensor i is the optimal sensor to apply to tima Q0 _

Inequalities (102-103) define 2M' linear constraints which the

nonnegative z(0) must satisfy, where M' is the number of adjacent sensors.

If a solution is found with one or more of these constraints satisfied with

equality, then the optimal sensor selection at time 0 is mixed.

This special case immediately suggests using an open loop feed back

strategy, where at each point in time the initial sensor is recomputed using

(102 - 103) repeatedly. If singular controls should arise, they may be

approximated by a pure choice of a sensor; receiving an observation will

update the conditional probabilities, hence c, and hence q which will fall

on the same boundary at the next instant of time with negligible probability.

This suggests a discrete time implementation, with the sensor choice held

fixed over the sample period 6 , and 6 satisfies (45).

Stationary Primary Sensors: If a particular primary sensor and it adjacent

sensors are stationary,

n0 (103)

-A
in (102) and hence z(0) does not affect the satisfaction of (102) at all.

Since the primary sensor j is not superflous, a z(0) can always be found

to satisfy (102); q satisfies (103) iff

<q(0), a. > > < q(O), a1 > (104)J -- '

Thus if a is chosen to achieve (104) and q(0) lies in the corresponding

primary sector defined by the stationary version of (85)

< q(0), nj> > 0 (105)

then sensor j is optimal to apply at t 0.

8

The question of uniqueness can not be addressed here, but it is conjectured

that such an i is unique.
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in particular, if all sensors are primary, the optimal openloop

feedback law can be computed using only (104). Also, the entire schedule

may be computed in these cases using (104) to select the sensor as q is

integrated forward in time (and this corresponds to steps 1 and 2 of the

numerical algorithm given above, partially justifying it as a suggested

approach to solving nearly stationary problems).

The interpretation of this rule in terms of the control polytope is

that q(0) represents the need for information, and one selects the sensor
_s

which best matches that need in terms of its projection on q(O).

-A
Conclusion: The major structural component which helps determine u(0) is

that of primary sensor. By exploiting the implications of a schedule which

has z and q in a single sector, it becomes easy to determine the initial

sensor to be selected whithout finding the entire schedule, and this greatly

encourages on-line implementations.

VI. Examples

Three practical examples illustrate both the range of applications

for which these results may be used, and the use of the various pieces of

structure developed in section IV in solving problems.

Surveillance: Consider a one-dimensional surveillance problem, where a

single physical sensor is to be pointed at a number K of discrete bins,

each of which may or may not contain an object. The signal received from

each bin (e.g. a radar reflection or an acoustic emission) takes on a fixed

level dependent only on the state of the bin and it corrupted by Gaussian

noise. The optimal pointing schedule for obtaining a clear picture of the



contents of the bins is to be determined.

Each of the basic underlying hypotheses for this problem specifies

the subset of bins which are occupied by objects. The number of hypotheses

grows esponentially with K, and leads to cumbersome problems unless the

decomposition properties of the Cartesian obscurity function (18) are

exploited. Let

T. (t) = conditional probability that bin i is occupied
to

Cil(t) - conditional probability th&a bin i isunoccupied

so
(-A)l/2

0vi - r i0 r il) (106)

distinguish between the states of bin i.

Pointing the sensor at bin j produces a Gaussian random variable

with variance a. and mean

M. mif j occupied
3o

m iiif 5 unoccupied

so, from appendix C, the clarification coefficients areI i 0 j
a 0 (107)

•2( an 2

It is immediate that no sensor is superfluous, and that all sensors

are adjacent. (The control polytope has vertices only on each coordinate
1

axis). Any y > -- satisfies-a ajj

Y ajlaj -a )k aj - .k (108)
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so all sensors are primary. Since this is a stationary problem, it is

optimal to select the sensor at time zero which maximizes

< q(0), a.> = a q (0) = a-. b. c. (109)
J ii j ,,J J

where c. is the obscurity initially in bin j

c . (o0) 7'. (0))l/2 (110)

The interpretation of this role is to first look at the bin with

highest clarification, importance, and initial uncertainty. When all bins

are equally important and have identical priors, this rule selects first

that bin about which greatest clarification can be obtained, and postpones

looking into bins with lowest signal to noise ratio until last.

Implementation of the open loop feedback law is quite simple in

this case: maintain a list of bins ordered by

a)j bj(Tjo(t) jl(t))I1/2 (111)

At each time sample, point at the bin at the head of the list, receive

yi(t)1update Tjo and 7jl' reinsert bin j into the appropriate spot in

the list, and repeat.

Search: Suppose there are K bins as above, with a sensor which can point

at one at a time, but at most one bin contains a target. Now there are K+l

hypotheses, describing the location of the object as well as H representing

the absence of the object.

The Cartesian obscurity function can no longer be used since an

observation of one bin provides information which updates all probabilities i k'

- I-

• , ;. . ..



-46-

-1

An alternative is the uniform obscurity function (13).

K-I K 1/2
X I (S k r k (112)

kl=O k2=k+1 1 2

which separates all hypotheses equally.

Using the same sensor model as above, with

2 2
m jo m ml = m1 jj a (113)

for simplicity gives clarification coefficients

(ml m r 0 )
2  ijko

2
a(k 1 k)2)j ) a q (114)

0 else

where j 1,... ,K. Thus pointing the sensor at bin j affects all terms

involving iTj by a factor of

(mi1 - iool
a (1 20 (115)

and all others not at all.

Here again, no sensor is superfluous (since a(Oi)j = a uniquely

for control j) and all are adjacent. Also a y > - ensures
a

y a(kl,k 2 ) (a(k k) - (ka 3 k2 )) >. (aklk 2 )j - a
1 (il 2 U ) (a.k ) (k 1k 2 )Z

(116)

for all L , so every switch curve is closed in both directions and all

sensors are primary. Again (104) gives the optimal sensor; it maximizes

K-1 K1/
Z E a ((k )jlk T /2 (117)

k1 =0 k-2k+ (k1 + k2 j 2 1  2

- r rI
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or using (14)

- K -

aiT. Z AT (118)
k=O
k~j

Thus the sensor is pointed at the bin which has maximum obscurity

between it and all other hypotheses. Note that although vn defines a

k(k+l) dimensional space in which the clarification coefficients lie,

and there are only k sensors, the primary sensor stru.ture still proves

useful.

Testing: An object consists of two parts, each of which can be normal or

flawed. Radiation can be directed through the object in three directions

(figure 6) and the attenuation of the radiation measured. After normaliza-

tion the attenuation coefficient is 1 if both parts are normal,$ 1 if the

beam passes through a flawed first part, and 02 if through a flawed second

part (assume OI' 02 < 1).

While the uniform obscurity function could be used here, its six

terms can be reduced to four using
1/2 1/)11/21/

v(T) (Tr oi)I/2 + (it 7 2 ) + (7T It 3 ) + (T2 7T3)/2 (119)

v (-.() + v2(1T) + v3(7) + v4(IT)

where

iT = probability of no flaw
o

iT = probability 1 is flawed

it probability 2 is flawed

It3  probability both are flawed.

Assuming the observations are corrupted by zero mean, unit variance Gaussian
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sensor j

a.. 1 2 3
13

v(1-4 1) 2 (0 2

2 2 2

teii V2  o 1~2 (1 - 1

t i 3 0 0i - 2 )

v 0 (1- 2 2(1 - 2
4 2 2 1

TABLE 1: Clarification coefficients for Testing EXample
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noise, and ignoring scattering and other effects, the clarification coeffi-

cients for this problem are given in Table 1.

Structurally, no sensors are superfluous; corollary 9A assures that

the switch surface between 1 and 2 is closed bidirectionally, and the

surface from 1 to 3 and from 2 to 3 are closed. However, only one surface

from 3 to the others can be closed; if 'i > '2' the boundary from 3 to 1

fails the test (76-76).

For a specific example, let i = 1/2, 2 1/4. Then (76-78)

requires

1 S" 0 0
4

-y 9/16 9/16 [:/16

9/64 -7/64 -7/64

1/64 1/64 1/64

for the surface from 3 to 1 to be closed, and no Y > 0 exists for this.

However, the one from 3 to 2 is closed, so both sensors 2 and 3 are primary
-h

sensors. If q(O) lies in either of these, the respective sensor is optimal

at t = 0; if not, it lies in the secondary sector 1. Even detailed,

point-by-point analysis from theorem 9 shows q(t), hence z(t), can only

cross this boundary from 3 to 1 and there can be no singular arcs.

Thus, if q(0) lies in sector 1, i.e.

cq(0),- <(0)& -1 -a --%

<q(), a1 >> <q(0), a 2>, <q(0), a1> > <q(0), a 3 > (120)

the most general schedule possible is

a) use 1 alone for T seconds, then

b) use 3 alone for T 2seconds, then

c) singular arc between l and 3 for T3 seconds,

-- --
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where T1 + T2 + T 3 T and all are nonnegative. The mix necessary to

sustain (c) can be found easily; solutions for T. are found by integrating

J1 -1 -A
the z and q equations explicitly and using the terminal condition on q,

and the condition that z must cross the boundary between 1 and 2 at

exactly time T1 .

Thus the existence of secondary sensors makes a problem more complex;

in particular, the choice of sensor I or 3 in this case will depend not

only on q(O), but also on T since the above equations are nonlinear in

the s.

VII. Summary and Future Directions

This paper has addressed the general problem of selecting a sequence

of sensor observations to take in order to acquire information to test the

truth of each of several hypotheses. The principal contributions are:

a) a problem formulation with a cost functional possessing both

desirable qualitative properties and useful analytic structure;

b) the evaluation of the information provided by a sensor in terms

of a vector of clarification coefficients,

c) classification of sensors into superfluous, primary, and secondary

sensors;

d) structural considerations such as adjacency and closure which limit

the set of possible sequences;

e) a numerical technique for finding a schedule in the general case, and

0) special conditions under which the first sensor in the schedule may

be determined easily.
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However, there are a number of extensions to be considered. These

include

a) optimal stopping: by including a "null" sensor with clarification

coefficients all zero, and introducing additional penalty for the time

non-null sensors are used, one can consider terminating the sequence when

enough information is collected (see appendix G for a binary example

related to [20)).

b) Terminal cost: the penalty function here assumes that only obscurity

over the interval of interest is to be considered; an additional term

penalizing obscurity left at time T would fit nicely into the framework

-3
(and result in a boundary condition on z which is not the origin).

-3
c) Cost linear in it : Costs of this form are also eigenfunctions

of the Bayes update, with eigenvalue 1. By making the coefficients

of these terms dependent on the sensor choice, however, one can model

the fact that selection of a particular sensor might be undesirable

if a particular hypothesis were true.

d) Sensor dynamics: The dynamic optimization problem resulting

from this formulation can also be augmented with state variables

describing sensor dynamics (e.g. position and velocity of a sensor

platform), with controls affecting them. This would allow modelling of

dynamic constraints which prohibit instantaneous switching between sensors.

e) Correlated observation processes: This formulation requires

the observations to be independent increment processes when conditioned

on the hypotheses. Relaxing this condition to allow them to be, say
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noise filtered through a linear system where the system parameters depend

on the hypothesis,would extend the scope of applications. However,

sensors would be selected in this case not only to distinguish among

hypotheses, but also to acquire good state estimates to aid this distinguish-

ing.

f) Dynamic hypotheses- If the hypothesis changes over time, as would

the state of a Markov chain, one could model a number of dynamic detection

and identification problems. Conceptually this can be placed in The

current framework by regarding each state sequence as a hypothesis with

time varying observation statistics. However, the state space structure

should be exploitable tu reduce the complexity.

many other opportunities exist, but those seem to be both important

and relatively closely related to the results here.

i4
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APPENDIX A: NOTATION

Symbol Quantity Defined (eq.)

a ij clarification coefficient for term i by sensor j (40)

a. vector of ai (56)
S~J

s el ec(50)
a, a(u(t)) convex combination of aj selected

a ij eigenvalue of mode i under update by sensor j (25)

A matrix of all a. (57)

b. incremental cost of obscurity of form in term 1 (8)

-1
b vector of b.'s (61)1

ci terminal cost coefficient (vi(-) at t - 0) (31)

c vector of c.'s (61)

c (*) general terminal cost function (E-1)

d(.) general running cost function (E-1)

6 sample interval betweer chedule points (43)

f() general state transit function (E-2)

y nonnegative scale factor (Thm.6)

H k basic hypothesis k (1)

H maximiun a posteriori estimate of H (14)

i index over terms in obscurity function (8)

j index over sensors or controls (24)

K number of hypotheses (1)

.-- I.
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k index over hypotheses (1)

L number of subhypotheses (19)

z, index over subhypotheses (15)

Xk Poisson rate associated with hypothesis k (B-2)

M number of sensors (47)

mean of Gaussian distribution associated with (107)

hypothesis k (B-4)

N number of terms in v(r) (8)

n., normal to switch surface between sensors i and j (68)
1J

P covariance matrix associated with hypothesis k (B-4)

Pi costate variable (E-8)
-3
p costate vector (E-3)

PD probability of detection (D-2)

PF probability of false alarm (D-2)

ITk conditional probability of hypothesis k (1)

Sconditional distribution on hypotheses (8)
AA

Tr probability of H (14)

Ok attenuation coefficient of hypothesis k (Table

q modified costate (55)(2-

-S
q modified costate vector (60)

th -A
Ic k iteration on boundary condition on q (101)

rk coefficient in convex combination (7)(63)

a standard deviation (107)

Sterminal time of problem (22)

t time index (continuous and discrete) (2)

t reverse time variable (51)
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u. fraction of time spent using sensor j (47)J
-4
u input (control) vector (50)

U point of symmetry in detector (D-4)

-b -u* optimum value of u (54)

v(n) obscurity function (8)

_th
v (th i term in obscurity function (8)I

vc (T) Cartesian obscurity function (18)

Vu (C) uniform obscurity function (13)

V cost-to-go function (26)

xstate variable, amplitude of mode of cost function (27)

x state vector (E-1)

'10 initial condition on x. (E-2)

Yj random output obtained when sensor j selected (2)

z.i alternate state variable (55) CE-10)

-1
z alternate state vector (59)

z(k;O) K iteration on boundary condition for z (101)

- - -- - -
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APPENDIX B: CLARIFICATION COEFFICIENTS FOR

GAUSSIAN AND POISSON PROCESSES

iiiThis appendix contains explicit values for a ij (t) for observations

which are Poisson or vector Gaussian processes. Let the two hypotheses in

the obscurity function be H and H2; a. is defined as

-N 1/21
a j(t) = -jn [p 1HI) p(jyHQI/dy (2-i)

where this is interpreted as a Steiljes integral if the functions are of

denumerable support.

Poisson process: if y t) is the nwtuner of events in the t tsample interval

resulting from a Poisson process (such as photons striking a detector) which

is characterized by rate k(t) under each hypothesis, then

p(y(t) - nfl k) = , (B-2).IH n! B2

(B-1) becomes

aij(t) - 2 (B-3)

GAussian process; If y(t) is Gaussian with mean M(t) and covariance_•wt)

under each hypothesis, direct evaluation of (B-i) , completing the square

in the exponent, and using a well known matrix equality E19] gives

-'1 [P1 t) + PIt)
ait) W - n det If 2 ) - I - n det P (t) (B-4)
ij 2 )4 -

- - n dot? P t) + (x1(t z2 t) TP M t + P Wt) -1( (rnjt - 2(W))
4-2 2 -1 2 2

which is easily interpreted as the signal to noise ratio if P Ct) - P2).

IL ....
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APPENDIX C: DIRECT DERIVATION OF CLARIFICATION COEFFICIENTS

Clarification coefficients for the continuous time processes of Appendix B

can be derived directly without recourse to the definition involving an

approximation to discrete time such as (51). It is restrictive in that

the independence of samples over time (when conditioned on the hypothesis)(2)

must be replaced with the assumption that y(t) is an independent increments

process with -A

J -A
p(y(t+6) - y(t)) (c-1)

known for all t, T and is independent of y(t) and all other disjoint intervals

of time.

Poisson processes: Let (C-1) be that qf a Poisson counting process,

so -A 6

-A (Ak (t) )n k

p(y(t+6) - y(t) - ni'k) =n (C-2)

where 6 is small compared with the derivatives of A k(t). The eigenvalue

(25) associated with a term distinguishing H1 from H2 is

(t) - I7 (4e Nt) (C-3)
(1 12W 2 12(C3

by direct computation. As 6 - 0, the state equation

x(t+6) - a 1 2 (t) x(t) + b8 (C-4)

can be written as

x(t+6) - x(t) a 1 2 (t) - 1
6 x(t) + b(-5
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In the limit

1(t) = x 2(t)-6)

A~) ~)+ b (

or indeed

=Y(t) = - [ Zn a 1 2(t)] x(t) + b (C-7)

--- a1 2 (t) x(t) + b (C-8)

Gaussian processes: Here the distribution (C-1) for a small interval is

Gaussian with mean m(t)6 and covariance P (t)d . The eigenvalue associated:-k

with a term distinguishing H1 and H2 for samples at t and t+6 is

F2det ) 1  1/4
c X1 2 (t) x (C-9)

6m1t) - m2 (t)) T Mm(t) - 2(t)

whch2 a((t) +-P 2 (t)- "

S~which, after limiting as in (C-4, C-8) gives al 2 (t) as (B-41
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APPENDIX D: APPLICATION TO OPTIMAL DETECTOR DESIGN

The problem of detecting a known signal in noise has been well studied

El]. Essentially, it is a binary hypothesis testing problem - H1 assumes

no signal present and H2 corresponds to the existence of a signal. The

detector observes the signal, if any, corrupted by noise and makes a

decision as to whether H, or H2 is the actual case.

There are a variety of criteria for judging detector performance:

Bayes,Risk Neyman-Pearson, etc. All result in a detector which computes

the posterior probabilities of H1 and H2 given the observed waveform, then

compares their ratio to a fixed threshold. As the threshold is varied,

the probability of falso alarm pF (choosing H2 when H is true) and the

probability of detection pD (choosing H2 when H1 is true) vary. These

criteria give formulae for setting the threshold in some optimal way.

This appendix proposes yet a third way to select the threshold as

an example of the application of the binary hypothesis testing result

of section IV. Suppose the detector is used for data compression -

reducing its entire observed waveform to a binary choice between H1 and

H2. This choice is to be communicated to some other point where it will

be used as a basis for some decisions and hence minimum obscurity is desired.

The result of section IV says that the clarification coefficient of the

detector should be maximized; here, the variable which can be selected

is the threshold in the detector.

Recall that maximizing the clarification coefficient is equivalent

to minimizing

" / 2
: (p(3H1 ) p(HkIH 2 )) 1 " 2  (D-1)

k-1

-I
• ' ' ' [ ' ' i
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where H is the output of the detector. In terms of PD and PF this is

l1 - PF(U) (I - PD(U))1/2 + (Pr(u) PD(t))I/2 (D-2)

where PF (u) and PD(u) are the false alarm and detection probabilities when

u is used as the threshold. Assuming differentiability, a necessary

condition for u , the optimum threshold is that

d I/d uI _ D(l - (1 - PF))1/2 - ( - D H PD P )1/2

P D u* 
U* (D-3)

Consider u, the t value of u for which pD(U) = 1 - p7 (u) (which exists

for pD(*) and p F(*) are continuous.) If enough symmetry is present so

that

dp DU dpij

du =dul

Suu (D-4)
o 0

then the above condition is satisfied. For the case of a signal in

additive white Gaussian noise, this holds and yields, incidentally, the

minimum probability of error rule.

In summary, this appendix illustrates how the techniques developed here

can be applied to specification of sensor parameters as well as sensor

selection. The resulting condition for setting detector thresholds is

interesting in that it arises naturally from an information theoretic

approach, and depends only on internal sensor characteristics without

recourse to prior probabilities or to cost parameters.
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APPENDIX E: DERIVATIOIN OF NECESSARY CONDITIONS

Given an optimal control problem: minimize

S(x(t)) 
+ d(x(t), u(t))dt (E-l)

with

"1 W fi(x(t)t u(t),t) xi(0) - xio 1-1,2 ..... ,N (E-2)

and with fixed terminal time T and no terminal constraints on x,

Pontryagin principle gives the following necessary conditions.

The laniltonian function is defined as

--k -" -Ir -.. b -A .

H(x,p,u,t) - p (t) f(x,u,t) + d(x,u,t) (E-3)
- .. a

wwhere p(t) is an N-dimensional costate vector. The necessary conditions

to be satisfied are

• , -* ,, * =_.

1. xl(t) fi (t), p (t) u (t),t) - X0io (E-4

2. pi(t) . . H (t), u (t),t) Pi(T) - c(x(T)) (E-5)

3. H(x (t), p(t), u(t),t) < tt(x (t),p(t), u(t),t)

for all u(t) (E-6)

In the problem (52,53) these become:

H(x(t), p(t), U(t),t) - E -p(t) x (t) ai(u(t)) + pi(t) bi
S~i-l

1. xi (t) -aai(u (t)) xi(t) + bi xi(0) - 0 (E-7)

2. (t) a ai(u(t) pi(t) Pi(T) - ci (E-8)

S~N ,,_,N , _
N3. E p Xi(t) a (u N) E pi(t) xi(t) ai (u(t))

i- i 
i -fil

for all u(t) (E-9)

The Hamiltonian condition (E-9) suggests the change of variable

z Ci(t) = Pi(t) xi(t) (E-10)

-, -*- .
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which satisfies (using (E-7, E-8))

ii(t) = bi Pi(t) zi(0) = 0 (E-ll)

Define also
qi t) = b.i pi(t) (E-12)

which (E-8) gives as satisfying

-J*
qi(t) - ai(u •t)) qi(t) qi(T)= b. c. (E-13)

Finally, the Hamiltonian condition itself becomes

N __ N
S z.(t) ai(u Mt) > S z.(t) ai(u(t)) for all ult) (E-14)i-l 1 1- i=l1

(E-11, E-13, E-14) are the conditions which appear as (54-56).

Finally, the total cost is

N N
E c. x. (T) = E P(T) xiCT)
i3.i iPl

N
= z. (T) (E-15)

S~i=l

/I1
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Statement: At time t,

<z(t), n 1 2 (t)> = 0 (F-i)

<q(t), n 1 2 (t)> + <z(t), n1 2(t)> 0 (F-2)

and za Ur), q. -) are the trajectories following this point when sensor i

is applied, i = 1,2, Tett, t+6]. There are four conclusions to be drawn

concerning the relationship of zI(t) - z 2 (t) and n 1 2 (t), the normal to the

switch curve, as well as on the existence of singular controls.

a) -A1 r) -,1 -3(F)

a) <Z1(T), n1 2 ()> >(_<z 2 (r), n 1 2 (t)> (F-3)

Interpretation: Application of sensor I moves z(-) toward the sector in

which sensor 1 is optimal at a greater rate than does application of sensor 2.

Proof: Since q(t) > 0 by theorem 6, for any sensors 1 and 2

qi(t) (a. (t) - a. (t))2 > 0 (F-4)
2. il i

or

qi(t) a il (t) (a ll(t) - a i2 (t)) > qi(t) a i2(t) (all(t) a ai2(t)) (F-5)

Sunming over i:
-3 --- 1J-11 %

<a (t)- q(t), n 1 2 (t)> > <a 2t)- q(t), n12 (t)> (F-6)

Adding

2<q(t), n 1 2 (t)> + <z(t), n 1 2 (t)> (F-7)

to both sides gives

dt2 1 1 (t), n12(t)> _ 2 12(t), n1t)> (F-8)
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The condition (F-2) rewritten as

Jd

< Z (t), n1 2 (t)> = <z (t) Thl2(t)> (>-9)1 1 2 ' 2 12

ensures that (F - 3) holds for a short period after t.

b) <zI(T), n12(T)> >0 iff

-3- -J"I _.v-
<a(t), q(t), n12 (t)> + 2<q(t), n 2(t)>+c<zt), n 2Ct)> > 0 (F-10)

Interpretation: Sensor 1 can drive z into the sector where it is solely

optimal.

Proof: As above, (F-2) implies that at time t

da-'•
-t<zt), n )> 0 (F1>)

The <Z (T), n 2(T)> increases if the second derivative at t is

positive; (F-10) ensures this.

c) Similar to (b), only driving z(t) into the sector where 2 is solely

optimal requires the second derivative to be negative.

d) Singular controls exist iff both condition (F-10)and its companion

hold.

Interpretation: z(t) can be maintained on the switch curve iff sensor

1 alone can move it into its sector, and sensor 2 alone can move it off

the curve into the sector where a2 is optimal.

Proof: Singular controls require

-2 < z(t) n12 (t)> = 0 (F-12)
dt

M ill'
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for some

a(t) = u (t) a (t) + u2(t) a2(t) (F-13)

with

u( {t), u 2 (t) > 0; uI(t) + u 2 (t) 1 (F-14)

Epanding (F-12) and substituting (F-13), it is necessary that

u (t) Y It) - U2(t) Y2(t) = 0 (F-15)

where

Y7 (t) <al(t)" q(t), nl2 (t)> + -I<q(t), n12 (t) > + < z(t), nl12(t)> (F-16)
1 12'1

and

-Y 2 q (= <-, nl2{t)> + 2Cq(t), n 2 (t)> + <z(t), n 2 (t)> (F-17)

(F-15) has the convex sum of two scalars equal to zero; this is possible

iff one is nonnegative and the other nonpositive. Since (F-8) implies

Yl(t) > -Y2 (t) (F-18)

Y1 (t) must be nonnegative and -Y2 (t) nonpositive.

Computation of singular controls. The mixture of sensors 1 and 2 which

maintain singularity, if they exist, are given by

MuY2 
(t)

1 Yl(t) + Y2 (t) (F-19)

u~~~ (t) (20
u 2 (t)t) + Y2 (t) 1F-20)

Extention to several controls: With K singular controls, (7-13) is

generalized to MI

a(t) =Z u. a (t) (F- 21)
J=1 :

-- !



-67-

and (F-14) to

SSH'
u > 0 o u. j i (F-22)

j=l

Pairwise constraints give (F-15) as

u.(t) M -J--) uj(t) (F-23)i Yi(t) j

for all sensor pairs(i,j) in the set. The forms (F-23) give at most M'-I
_I

independent equations in u(t); they give exactly M'-l such constraints when

the sensors are linearly independent. Combining these with (F-22) gives the

unique control mix to maintain singularity unless the sensors are linearly

dependent; in this case, all of the available solutions are dynamically

equivalent.

... .. "
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APPENDIX G: EXAMPLE OF OPTIMAL STOPPING

The general problem formulation of this paper can be augmented to

allow explicit consideration of stopping (or becoming inact-ve for a period

of time in nonstationary problems). The objective is to capture the notion
-5

"that the iT(t) can not be expected to reach an extremal distribution in finite

time. However, at some point it becomes sufficiently close to an extremal

distribution that further effort is unjustified. This can be modelled by

augmenting the state vector with a "clock" state keeping track of the time

a sensor is in use, and penalizing its final value . The clock

is turned off whenever a null sensor is invoked, one which provides no

information on any term in the obscurity function.

As this is intended as a simple example, it will consider only a

stationary binary hypothesis testing problem (one term in v(r)). The

development of this problem is identical to the main work up through

sectioa 1II; we pick up from there.

Problem statement: One of M sensors may be selected at each time; sensor j

causes the amplitude x1 (t) of the cost-to-go function to vary as

xt) - -aj x 't) + b (G-l)

A penalty on the obscurity remaining at the end of the scheduling interval

of the form

d ( 1i (T) w2 (T)) 1/ 2  (G-2)

would appear in the reverse-time formulation as (see Theorem 3)

x (0) = d (G-3)

(It is necessary to penalize the residual obscurity with a d>> b or the

-,.
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schedule will stop at t - 0)

To include the time penalty, introduce

0 ; I X 0(0) 0 (G-4)

and the overall objective is then to minimize

co x (T) + cI x (T) (G-5)

where co specifies the weight given to time and cI is as before. Finally,

introduce the "wait" sensor for which the dynamics become

-=0 o KM 0 (G-6)

as neither clarification nor penalty is accrued when it is used.

Necessary Conditions: The maximum principle yields the following necessary

conditions for this problem:

Case I1 Sensor j # 0 is optimal

Hamiltonian: -a x 1 (t) pl(t) + b pl(t) + po(t)

States: x (t) -1

x(t) - aaj Xl(t)

Costates: po - 0

P1 (t) = as pl(t)

Case II; Sensor 0 is optimal

Hamiltonian: 0

States: (t) = 0
0

1 (t)= 0
Costates: POCt) = 0

(t) 0

2'0
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Hamiltonian: Choose j to achieve the minimum value.
20

Boundary conditions:

x (0) -0 p 0(T) c0

x (0) - d pI(T) - I

Interpretation: The Hamiltonian condition guarantees that if a non-null

sensor is selected, it will be the one with greatest aj, as before.

Dropping all others, the decision for sensors is

0

0 > -a1 xllt) pl(t) + b pl(t) + P0 (t) (G-7)
j

Define

z1 (t) - a1 x (t) + b pl(t) + Po(t) (G-8)

so

z 1 (t) - P (t) if sensor j selected (G-9)

- 0 else

However, p 0 Wt is a positive constant, cor regardless of schedule. Hence,

z1 Wt) is monotonically increasing, and the only candidates for optimal

schedules can switch from j to 0 at most once, and never from 0 to J.

Let T be the total time the sensor j is on, and T the time it is1 o

off. Then

T + T -T 1(T 1 1 G-0

give conditions for finding T1 and T". Integrating and substituting boundary

conditions gives

z (T 1 C (b - aT Me + 0 (G-11)

which is zero when

a T c
e - (aid b) (G -12)

0III °
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implementation: This rule can be implemented in open loop feedback

fashion by noting that sensor j is used at zero iff the solution for T1

in (G-12) is positive, i.e. iff

c1
- (ajd - b) > 1 (G-13)

O0

Since

1 2.C=(r 1(0) w2 (O)) /2 (p(1-p)) 1 / 2 < (114

it follows that no sensor is ever used if

1
> 1/2 (G-15)c (a .d-b)

0)

and j is used only when

(p- 1/2)2 < 14- (G-16)- c 2 (ad-b) 2

This gives a decision rule which is fixed over time but shares the

structural properties of other stopping strategies [20] in that data

continues to be collected when the conditional distribution is near the

center of the [0,1) interval, and ceases as it moves toward the boundcries.

?1
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